Small Header

RP9: 3D printing methodologies for sensor system packaging (ESR9, FBK)

RP9: 3D printing methodologies for sensor system packaging (ESR9, FBK)


In many applications and research activities involving micro/nanosensors, the packaging issues have been often underestimated by compromising important features as sensors sensitivity, reproducibility and throughput. The integration of multisensory systems on robots or buoys will require advanced packaging strategies. Recent advances in 3D printing have demonstrated the possibility to creating packages with polymers, metals, composites and ceramics, which have higher adaptability to different environmental conditions. 3D printing enables the creation of complex geometric shapes and merging of selected functional components into any configuration, thus supplying a new approach for the fabrication of multifunctional end-use devices that can potentially combine optical, chemical, electronic, electromagnetic, fluidic, thermal and acoustic features. Starting from this premise, this project will: (1) model, design and create multi-process 3D printing methodologies; (2) suggest 3D printing architectures for more sophisticated devices with a higher level of automation and increased integration/packaging level; (3) develop packages to integrates the sensory system.

Lead Institution

Fondazione Bruno Kessler (FBK)


Trento, Italy